翻訳と辞書 |
Hodge manifold : ウィキペディア英語版 | Kodaira embedding theorem In mathematics, the Kodaira embedding theorem characterises non-singular projective varieties, over the complex numbers, amongst compact Kähler manifolds. In effect it says precisely which complex manifolds are defined by homogeneous polynomials. Kunihiko Kodaira's result is that for a compact Kähler manifold ''M'', with a Hodge metric, meaning that the cohomology class in degree 2 defined by the Kähler form ω is an ''integral'' cohomology class, there is a complex-analytic embedding of ''M'' into complex projective space of some high enough dimension ''N''. The fact that ''M'' embeds as an algebraic variety follows from its compactness by Chow's theorem. A Kähler manifold with a Hodge metric is occasionally called a Hodge manifold (named after W. V. D. Hodge), so Kodaira's results states that Hodge manifolds are projective. The converse that projective manifolds are Hodge manifolds is more elementary and was already known. ==See also==
*Hodge structure *Moishezon manifold
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Kodaira embedding theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|